³⁷Ar production for the test purposes

Dzhonrid Abdurashitov INR, Moscow

27th KATRIN collaboration meeting Karlsruhe, 16.10.2014

REPORT TOPICS

- ³⁷Ar motivation
- KCI target preparation
- irradiation under 7 MeV proton beam
- extraction of ³⁷Ar
- counting in proportional counter
- conclusions

³⁷Ar motivation for KATRIN

3/2+ 35.04 d EC 18Ar

Principal radiations produced in the decay of ³⁷Ar

37CI

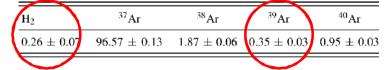
Q_{EC}813.5

Sum energy of Auge elect- rons, keV	Energy of X-ray, keV	Percent of all decays	Decay mode
2.82	0.0	81.5	K
0.27	0.0	8.9	L
0.02	0.0	0.9	M
0.20	2.62	8.2	K
0.01	2.81	0.5	L

Low energy electron source for check the storage of electrons (at elementary level)

³⁷Ar motivation for KATRIN

Possible production: ⁴⁰Ca(n,α)³⁷Ar for the SAGE 1 MegaCurie neutrino source


PHYSICAL REVIEW C 73, 045805 (2006)

Measurement of the response of a Ga solar neutrino experiment to neutrinos from a ³⁷Ar source

J. N. Abdurashitov, V. N. Gavrin, S. V. Girin, V. V. Gorbachev, P. P. Gurkina, T. V. Ibragimova, A. V. Kalikhov, N. G. Khairnasov, T. V. Knodel, V. A. Matveev, I. N. Mirmov, A. A. Shikhin, E. P. Veretenkin, V. M. Vermul, V. E. Yants, and G. T. Zatsepin

Institute for Nuclear Research of the Russian Academy of Sciences, Moscow RU-117312, Russia

TABLE IV. Gas content of the ³⁷Ar source 47.5 h prior to the reference time in percentage by volume. The uncertainty shown is statistical; there are additional systematic components whose sum is no more than 0.8%.

III. SOURCE PRODUCTION

The source was made by irradiating calcium oxide in the fast neutron breeder reactor BN-600 at Zarechny, Russia. The total fast flux at this reactor is 2.3×10^{15} neutrons/(cm² s), of which 1.7×10^{14} neutrons/(cm² s) have energy above the

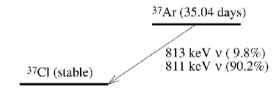


FIG. 2. ³⁷Ar decay scheme showing the neutrino energies.

³⁷Ar motivation for KATRIN

Possible production of ³⁷Ar:

Thermal neutron irradiation: $^{36}Ar(n,\gamma)^{37}Ar$

expensive

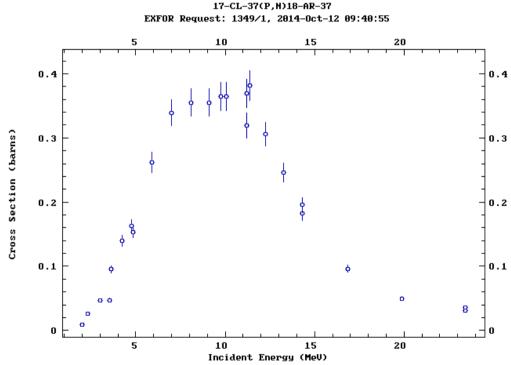
side reactions (39Ar, ..)

Fast neutron irradiation of CaO: 40 Ca(n, α) 37 Ar

(SAGE 1 MCi neutrino source)

side reactions (H₂, ³⁹Ar, ..)

Irradiation of KCI (NaCI) with protons: 37CI(p,n)37Ar

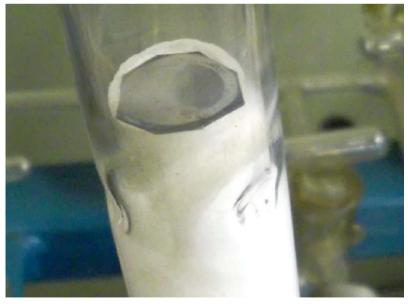

clean, no side reactions at low energy

 $(^{35}CI; ^{37}CI) + p - X => (^{35}Ar; ^{37}Ar)$ no room

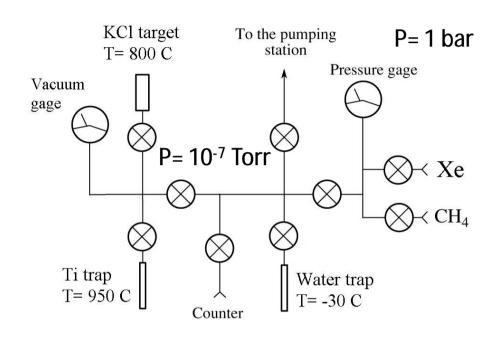
no room for 39 Ar (β -, 269 years) and for 42 Ar (β -, 33 years)

KCI target irradiation

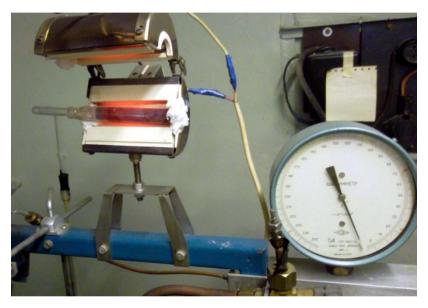
MSU cyclotrone: $E_p = 7$ MeV, $I_p = 2$ μ A, T = 2 hours, defocused beam (very old one) ~ 10 Wt of heat at Nb plate


Cross section: 0.35 barns at 7 MeV

Expected Intensity: ~42 kBq

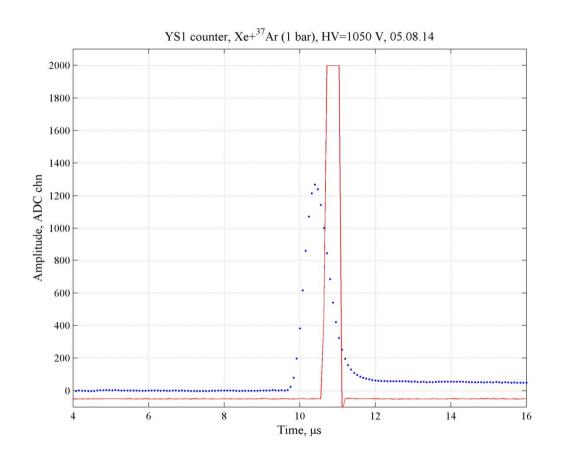

EOB: 20 Dec 2013

The target:


- -10 x 10 x 2 mm Nb plate
- -10 μm film of KCl
- -vacuum deposition at 10⁻⁷ Torr

Extraction of ³⁷Ar and counter filling

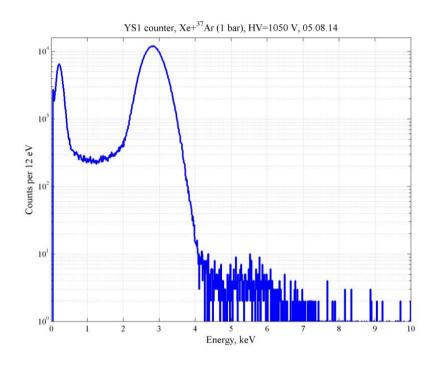
Titanium powder trap in oven



Counter:

- quartz tube Ø4 mm
- carbon 1 µm film
- 0.98 volume efficiency

Counting of ³⁷Ar in proportional counter


Charge preamplifier: $\tau = 60 \mu s$

Amplifier: shaping time 0.5 µs

Flash ADC: 12 bit, 100 MS/s

Counting of ³⁷Ar in proportional counter

Statistics: 10⁶ events

threshold ~100 eV

rate 430 s⁻¹ (05.08.14)

Rate at EOB (6.6 half lives): ~42 kBq ----- just the same

Peak at 5.6 keV is due to pile-up

Conclusions

- -Technology of pure ³⁷Ar production is available and can be reproduced/improved
- Samples of ³⁷Ar are under full precize control
- wide range of intensities 0.1 Bq to 10 kBq can be provided with accuracy of 1%

THANKS TO

- T.Chuvilskaya (INP MSU, Moscow) providing irradiation at cyclotrone
- V. Yants (INR, Moscow) for professional assistance
- N. Titov (Troitsk-nu-mass experiment) moral support

All you – for attention